3.4 The Chain Rule

In this section you will learn how to differentiate more difficult functions using the Chain Rule. For example, the function $\boldsymbol{F}(\boldsymbol{x})=\sqrt[3]{\boldsymbol{x}^{2}+\boldsymbol{x}+\mathbf{1}}$. With the rules we have so far, we cannot differentiate this function.

Notice that the function $\mathrm{F}(\mathrm{x})$ is a composite function. If we let $y=f(u)=\sqrt[3]{u}$ where $u=g(x)=x^{2}+x+1$, Then we can write $y=F(x)=f(g(x))$. But we still don't have a rule for how to differentiate composite functions. For this function we need the following new rule.

The Chain Rule: If g is differentiable at x and f is differentiable at $g(x)$, then the composite function $F=$ f o \boldsymbol{g} defined by $\boldsymbol{F}(x)=f(g(x))$ is differentiatlbe at x and F^{\prime} is given by the product:

$$
F^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

In Leibniz notation, if $\mathrm{y}=\mathrm{f}(\mathrm{u})$ and $\mathrm{u}=\mathrm{g}(\mathrm{x})$ are both differentiable functions, then $\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}$
Example: Find $F^{\prime}(x)$ if $F(x)=\sqrt[3]{x^{2}+x+1 .}$
Notice that $F(x)=(f o g)(x)=f(g(x))$ where $f(u)=\sqrt[3]{u}$ and $g(x)=x^{2}+x+1$
Since $f^{\prime}(u)=\frac{1}{3} u^{1-\frac{1}{3}}=\frac{1}{3} u^{\frac{2}{3}}=\frac{\sqrt[3]{u^{2}}}{3}$ and $g^{\prime}(x)=2 x+1$,
we get $F^{\prime}(x)=F^{\prime}(g(x)) \cdot g^{\prime}(x)=\sqrt[3]{\left(x^{2}+x+1\right)^{2}} \cdot(2 x+1)$
(An easier way to visualize this is to think of taking the derivative of the "outer" function times the derivative of the "inner" function.)

Example: Differentiate $y=\cos \left(\frac{\pi}{x}\right)$. The outer function is the cosine function and the inner function is $\frac{\pi}{x}$.

$$
\begin{aligned}
& y^{\prime}=-\sin \left(\frac{\pi}{x}\right) \cdot \frac{d y}{d x}\left(\frac{\pi}{x}\right) \quad \frac{d y}{d x}\left[\frac{\pi}{x}\right]=\frac{x(0)-\pi(1)}{x^{2}}=-\frac{\pi}{x^{2}} \\
& y^{\prime}=-\sin \left(\frac{\pi}{x}\right)\left(-\frac{\pi}{x^{2}}\right) \\
& y^{\prime}=\frac{\pi}{x^{2}} \sin \left(\frac{\pi}{x}\right)
\end{aligned}
$$

The Power Rule combined with the Chain Rule: If \boldsymbol{n} is any real number and $\boldsymbol{u}=\boldsymbol{g}(\boldsymbol{x})$ is differentiable, then

$$
\frac{d y}{d x}\left[u^{n}\right]=\boldsymbol{n} \cdot \boldsymbol{u}^{n-1} \cdot \boldsymbol{u}^{\prime} \quad \text { or } \quad \frac{d y}{d x}[\boldsymbol{g}(x)]^{n}=\boldsymbol{n}[\boldsymbol{g}(x)]^{n-1} \cdot \boldsymbol{g}^{\prime}(x)
$$

Example: Differentiate
a) $y=\left(x^{2}+2 x\right)^{5}$
b) $y=\left(\frac{\cos (x)}{1-2 x}\right)^{3}$
c) $y=\left(x^{2}+2 x\right)^{5} \cdot(1-2 x)^{4}$
d) $y=e^{\sec (3 x)}$
e) $y=\sin (\sec (\tan (x)))$

Solutions:
a) $y^{\prime}=5\left(x^{2}+2 x\right)^{4}(2 x+2)=(\mathbf{1 0 x}+\mathbf{1 0})\left(\boldsymbol{x}^{2}+\mathbf{2 x}\right)^{4}$
b) $y^{\prime}=3\left(\frac{\cos (x)}{1-2 x}\right)^{2} \cdot\left(\frac{(1-2 x)(-\sin (x))-(\cos (x)(-2)}{(1-2 x)^{2}}\right)=\frac{3\left(\cos ^{2}(x)\right)[-\sin (x)+2 x \sin (x)+2 \cos (x)]}{(1-2 x)^{4}}$
c) $y^{\prime}=\left(x^{2}+2 x\right)^{5}\left(4(1-2 x)^{3}(-2)\right)+(1-2 x)^{4}\left(5\left(x^{2}+2 x\right)^{4}(2 x+2)\right.$

$$
y^{\prime}=-8\left(x^{2}+2 x\right)^{5}(1-2 x)^{3}+(10 x+10)(1-2 x)^{4}\left(x^{2}+2 x\right)^{4}
$$

e) $y^{\prime}=\cos \left(\sec (\tan (x)) \cdot \sec (\tan (x)) \tan (\tan (x))\left(\sec ^{2}(x)\right.\right.$

PRACTICE MANY MORE OF THESE PROBLEMS!

